2018-05-30
Research website of Vyacheslav Gorchilin
All articles
Table of algorithms for the numerical solutions of some differential equations
To improve the visual representation of the algorithms, we introduce some simplifications. For example, \(\dot Y = \frac{dY(x)}{dx}\) and the values of a function at a point \(x_i\) will be written as \[Y(x_i) = Y_i \quad f(x_i) = f_i \quad g(x_i) = g_i \quad h(x_i) = h_i\] the distance between the points is standard and the same throughout the interval: \(\Delta x = x_i - x_{i-1}\). It is chosen depending on the requirements of the problem being solved and the computational capabilities of the processor. Also depends on the total number of iterations: \(i \in 1, 2, 3, ..., N\). The very meaning of the coordinates is simply: \(x_i = i\,\Delta x\). The symbols \(a, b, \omega, \alpha\) are denoted by constants, and the symbol \(\mathbf{i}\) is the imaginary unit.

Name Equation Numerical solution
Linear Bernoulli's equation \[g(x)\,\dot Y = f(x)\,Y + h(x)\] \[Y_i = {g_i\,Y_{i-1} + h_i\,\Delta x \over g_i - f_i\,\Delta x}, \quad Y_0 = Y(0)\]
The search function is in the exponent of the exponential \[\dot Y = f(x) \exp(a\,Y) + h(x)\] \[Y_i = Y_{i-1} + {f_i \exp(a\,Y_{i-1}) + h_i \over 1 + a\,f_i \exp(a\,Y_{i-1}) \Delta x } \Delta x, \quad Y_0 = Y(0)\]
The desired function is under the log \[\dot Y = f(x) \ln(1+a\,Y) + h(x) \\ a\,Y \ge 0 \] \[Y_i = Y_{i-1} + \left[ f_i \ln(1+a\,Y_{i-1}) - {a\,f_i\,Y_{i-1} \over 1+a\,Y_{i-1}} + h_i \right] \Delta x \\ a\,Y_i \ge 0, \quad Y_0 = Y(0)\]
The desired function is under the sine \[\dot Y = f(x) \sin(\omega\,Y + \alpha) + h(x)\] \[Y_i = Y_{i-1} + {f_i \sin(A) + h_i \over 1 - f_i\,\omega\cos(A) } \Delta x \\ A = \omega\,Y_{i-1} + \alpha, \quad Y_0 = Y(0)\]
Equation with square of derivative \[(\dot Y)^2 = f(x)\,Y + h(x)\] \[Y_i = \begin{cases} Y_{i-1} \pm \Delta x \sqrt{A}, & A \ge 0 \\ Y_{i-1} \pm \mathbf{i} \Delta x \sqrt{|A|}, & A \lt 0 \end{cases} \\ A = f_i\,Y_{i-1} + h_i \\ Y_0 = Y(0)\]
The equation with the square root of the unknown function \[\dot Y = f(x) \sqrt{Y} + h(x)\] \[Y_i = \begin{cases} A + \Delta x\,f_i \sqrt{Y_{i-1}}, & Y_{i-1} \ge 0 \\ A + \mathbf{i}\Delta x\,f_i \sqrt{|Y_{i-1}|}, & Y_{i-1} \lt 0 \end{cases} \\ A = Y_{i-1} + h_i\,\Delta x \\ Y_0 = Y(0)\]
Abel equation of the second kind \[\dot Y\,(Y + a) = f(x)\,Y + g(x) \] \[ Y_i = \begin{cases} A + \sqrt{B} & A \ge 0, B \ge 0 \\ A + \mathbf{i}\sqrt{|B|}, & A \ge 0, B \lt 0 \\ A - \sqrt{B}, & A \lt 0, B \ge 0 \\ A - \mathbf{i}\sqrt{|B|}, & A \lt 0, B \lt 0 \end{cases} \\ A = {Y_{i-1} + f_i\,\Delta x - a \over 2} \\ B = A^2 + a\,Y_{i-1} + g_i\,\Delta x \\ Y_0 = Y(0) \]
Ordinary diff. the equation of the second order \[\ddot Y = f(x)\,Y + a\] \[Y_i = {2Y_{i-1} - Y_{i-2} + a\,\Delta x^2 \over 1 - f_i\,\Delta x^2} \\ Y_0 = Y(0), \quad Y_{-1} = Y(0) - \dot Y(0)\,\Delta x\]
Equation the sine-Gordon. The desired function is under the sine \[\ddot Y = f(x)\,\sin(\omega\,Y + \alpha)\] \[Y_i = Y_{i-1} + {Y_{i-1} - Y_{i-2} + \Delta x^2 f_i \sin(A) \over 1 - \Delta x^2 f_i\,\omega\cos(A) } \\ A = \omega\,Y_{i-1} + \alpha \\ Y_0 = Y(0), \quad Y_{-1} = Y(0) - \dot Y(0)\,\Delta x\]
If in the process of calculating the imaginary component occurs, then it must be saved in a separate variable. Best in problems where such a component may appear immediately possible to separate the real and imaginary parts in separate variables.
 

© Vyacheslav Gorchilin, 2018
* Reprinting of the article are possible with the installation of links to this website and respect the copyright

2009-2018 © Vyacheslav Gorchilin