Расчет в онлайн
Известно, что катушка обладает собственной индуктивностью и ёмкостью, а значит, и собственным LC-резонансом. Если же катушку рассматривать, как длинную линию, то при определённых частотах в ней будет возникать также и режим стоячих волн. Совмещение этих двух режимов приводит к резкому увеличичению добротности контура и КПД второго рода (η2) в реальных устройствах. Подробнее об этом читайте здесь.
В данном моделировании задейстованы достаточно точные формулы для определения индуктивности и собственной ёмкости катушки, а также данные, учитывающие нелинейный характер изменения скорости распостранения волны в зависимости от частоты и параметров намотки.
На графике, по горизонтальной оси откладываются значения коэффициента намотки, который находится, как отношение шага намотки к диаметру жилы провода. По сути, этот коэффициент определяет конструкцию катушки. По вертикальной оси отложены значения частот в мегагерцах. Оранжевая кривая отражает LC-резонанс, а синий — волновой. Справа от графика приводятся данные самой катушки, которые просчитаны для точки пересечения этих кривых.
Для расширения вычислительного диапазона добавлена возможность подключения к катушке внешней дополнительной ёмкости, а для особых режимов — работа на любой гармонике LC-резонанса (по умолчанию — на первой).
Дополнительно можно ввести данные относительной диэлектрической проницаемости каркаса катушки и его толщины. По умолчанию, относительная диэлектрическая проницаемость равна единице.
- Волгов В. А. Детали и узлы радиоэлектронной аппаратуры
- Alan Payne. SELF-RESONANCE IN COILS, 2014
- Диэлектрическая проницаемость