Research website of Vyacheslav Gorchilin
All articles/Experiments
Battery electret-condenser effect
Experiments with ECK ECK confirmed effect and led to another modifying it with another material dielectric. Had made several different designs, based on the results of the experiments from which conclusions were drawn about the influence of the inductance of the copper coil is the ECC on the manifestation of the effect under investigation.
The device on the basis of this effect is shown schematically in figure below. 1 and 2 are the lower and upper plates of the ECC, respectively. They are a tape consisting of aluminium and paper layers. A paper layer of conventional construction paper tape, and the aluminum layer and aluminum construction tape. In between was a winding of copper wire (option a) or copper foil (option B) — 3.
First I will describe the design of option A. On the pipe with a diameter of 40-50 mm bonded aluminum tape, paper which is removed. On top of the glued construction paper tape. Next, wrap one layer of copper wire enamel insulation; diameter 0.3-0.4 mm. This layer will constitute the positive electrode EKC. The next layer of construction paper tape, and the top — layer aluminum tape from masking tape. Two aluminum layers, are connected to form a negative electrode EKC.
Схематический рисунок батарейки на основе электретно-конденсаторного эффекта
To confirm the effects of inductance on screen effect was made a control option B, in which instead of copper wire was laid a copper foil of approximately the same thickness. In this embodiment of the device the effect was at extremely low measurement values, from which the author has made the assumption that EK effect manifests itself in proportion to the inductance of the copper layer. Next, we will consider only a variant of A.
Circuit of the device is shown in the following figure. It as the ECC supports the coil L1, in which a copper layer is depicted in the form of inductance, and aluminum in the form of a plate. Схема включения батарейки на основе электретно-конденсаторного эффекта The operation of the circuit is. The charge for the EKC is taken from a pre-charged capacitor C1 by short circuiting the lower contact of the switch SW1, the charge almost completely in the L1 (the initial voltage on C1 was done by the author of the order of 1 kV, but depending on the material of the dielectric it may be different). After that, the contact SW1 is returned to the upper position and starts charging the capacitor C2. Depending on the initial voltage on C1, the length of winding, number of layers and number of turns in L1, the capacitor C2 is charged up to 0.3-1 during 5-30 seconds, after which they must be unloaded on the load Rn via the switch contact SW2. According to the EK effect, after opening a contact SW2, L1 again will charge C2, but a bit slower and to a smaller voltage, then C2 must be discharged to the load. The number of such cycles can be large, e.g., 100-200. Than such cycles will be greater the higher the overall efficiency. All capacitors — non-polar, it is better — ceramic with low leakage current.
My colleague, Space Games, sent the following message on this experiment:

Hello, I read your article about electret-condenser effect. Did the same battery as you have described here. Everything works (though my isolation is not very 1KV and above this it breaks). I used to do asymmetric capacitor foil: take 3 sheets of foil between them laid the paper and the top and bottom was also at the strip. Then it was rolled into a tube and two outer foil sheet connected. Turned out the condenser plates, different in size. When I was charging the a / C until about 15 volts, then discharged it on himself, then he is charged to about 1 volt. Then he was again discharged, and again he charged, only up to 0.8 volts and so can be repeated many times. I found this explanation: when we charge such a conder from the source (for example, on the lower electrode serves plus and a big minus), the power peredat on different capacitor plates the same number of charges. Further, as the area of the second electrode more than that of air, due to leakage currents, use of additional negative charges. Now, if such a capacitor to discharge himself, on a small plate Rasad will be equal to zero, and at large - will remain negative charge. After that, with a high electrode negative charge will drain into the air, and the little plate from the air will be attracted to the positive charge. So the capacitor will charge. Now, what if your electret battery works all the same? The role plays a small electrode foil, and a large coil.

Other experiments based on the same principles, but with batteries at lower voltages, can be found here.